M1.		(a) Iodine – <u>molecular</u> Not covalent lattice	1
		Graphite – macromolecular/giant covalent/giant atomic	1
	(b)	Layers of (C atoms)	1
		Connected by <u>covalent bonds</u> within each layer	1
		<u>Van der Waals forces/IMF</u> between layers/weak forces between layers	1
		<u>Many/strong covalent bonds need to be broken</u> If any other element mentioned other than C, CE = 0 Ignore the no of covalent bonds around the C if mentioned The first 3 marks could be scored with a <u>labelled</u> diagram. Need to label or state covalent bonds within the layers. Covalent or ionic or metallic bonds between molecules CE = 0	1
	(c)	Van der Waals forces are weak or easily broken Not vdw between atoms	1
		Van der Waals <u>between molecules</u> (or implied) <i>Allow weak IMF</i> = 2	1
	(d)	Does not have delocalised/free <u>electrons</u> Only allow answer with respect to iodine Not all electrons used in bonding Ignore free ions	1

M2. (a) Hydrogen/H bonds Not just hydrogen

van der Waals/vdw/dipole-dipole/London/temporarily induced dipole/dispersion forces

Not just dipole

1

1

(b)

M1 for partial charges as indicated in diagram (correct minimum) M2 for all four lone pairs M3 for H bond from the lp to the H (δ +) on the other molecule Lone pair on hydrogen CE = 0 OHO CE = 0 If only one molecule of water shown CE = 0

3

(c) Hydrogen bonds/IMF (in water) stronger

OR

IMF/VDW/dipole-dipole forces (in H_2S) are weaker

OR

H bonding is the strongest IMF

Ignore energy references Comparison must be stated or implied

1

(d) Atoms/molecules get larger/more shells/more electrons/more

	surface area Not heavier/greater Mr	1
	therefore increased <u>Van der Waals/IMF</u> forces Ignore references to dipole-dipole forces	1
(e)	Dative (covalent)/coordinate If not dative/coordinate CE = 0/2 If covalent or blank read on	1
	(Lone) pair/both electrons/two electrons on O(H ₂) donated (to H ⁻) OR pair/both electrons come from O(H ₂) <i>Explanation of a coordinate bond specific to oxygen or water</i> <i>required</i> <i>Not just H+ attracted to lone pair since that is nearer to a H</i> <i>bond</i>	1
(f)	ionic if not ionic CE = 0	1
	oppositely charged <u>ions</u> /+ and – <u>ions or particles</u> atoms or molecules loses M2 and M3	1
	ions attract <u>strongly</u> OR strong/many (ionic) bonds must be broken S [_] loses M2 Reference to IMF loses M2 and M3	1

M3. (a) $2s^2 2p^6$;

If ignored the 1s² given and written 1s²2s²2p° mark as correct Allow capitals and subscripts [13]

1

(b)	(i)	$Na^{+}(g) \rightarrow Na^{2+}(g) + e^{-i};$ One mark for equation and one mark for state symbols	
		Na [*] (g) + $e^{(-)} \rightarrow Na^{2*}(g) + 2e^{(-)};$ <i>M2 dependent on M1</i> <i>Allow Na[*](g) – $e^{(-)} \rightarrow Na(g)$</i> <i>Allow X[*](g) $\rightarrow X^{2*}(g) + e = 1$ mark</i>	2
	(ii)	Na ⁽²⁺⁾ requires loss of e ⁻ from a 2(p) orbital or 2 nd energy level or 2 nd shell <u>and</u> Mg ⁽²⁺⁾ requires loss of e ⁻ from a 3(s) orbital or 3 rd energy level or 3 rd shell / Na ⁽²⁺⁾ loses e from a lower (energy) orbital/ or vice versa; <i>Not from 3p</i>	1
		Less shielding (in Na); Or vice versa for Mg	1
		e [⇔] closer to nucleus/ more attraction (of electron to nucleus) (in Na); <i>M3 needs to be comparative</i>	1
	(iii)	Aluminium /Al;	1
(c)	Dec	reases; If not decreases CE = 0 If blank, mark on	1
	Incr	easing nuclear charge/ increasing number of protons;	1
	Eleo	ctrons in same shell or level/ same shielding/ similar shielding;	1
(d)	Ans	wer refers to Na; Allow converse answers relating to Mg.	
	Na	few <u>er</u> protons/small <u>er</u> nuclear charge/ fewer delocalised electrons; Allow Mg is 2+ and Na is +. If vdw CE = 0.	1

	Smaller attraction between nucleus and delocalised electrons;			
	If mentioned that charge density of Mg² is great <u>er</u> then allow first 2 marks. (ie charge / size / attraction). M3 allow weak <u>er</u> metallic bonding.	1		
	(Pant) chang chausing 2 long pairs + 2N-H hand pairs;			
(e)	(Dent) shape showing 2 ione pairs + 2N-H bond pairs,			
	Lone pairs can be with or without lobes.	1		
	Bent / v shape/ triangular;			
	Not tetrahedral. Allow non-linear. Bent-linear = contradiction.	1		
		•		

(f) Ne has full sub-levels/ can't get any more electrons in the sub-levels/ Ne has full shells;

> Not 2s² 2p⁶ alone. Not stable electron configuration.

1