M1. (a) lodine - molecular
Not covalent lattice

Graphite - macromolecular/giant covalent/giant atomic
(b) Layers of (C atoms)

Connected by covalent bonds within each layer

Van der Waals forces/IMF between layers/weak forces between layers

Many/strong covalent bonds need to be broken
If any other element mentioned other than $\mathrm{C}, \mathrm{CE}=0$ Ignore the no of covalent bonds around the C if mentioned The first 3 marks could be scored with a labelled diagram. Need to label or state covalent bonds within the layers. Covalent or ionic or metallic bonds between molecules $C E=$ 0
(c) Van der Waals forces are weak or easily broken

Not vdw between atoms

Van der Waals between molecules (or implied)
Allow weak IMF = 2
(d) Does not have delocalised/free electrons

Only allow answer with respect to iodine Not all electrons used in bonding Ignore free ions

M2. (a) Hydrogen/H bonds
Not just hydrogen
van der Waals/vdw/dipole-dipole/London/temporarily induced dipole/dispersion forces

Not just dipole
(b)

M1 for partial charges as indicated in diagram (correct minimum)
M2 for all four lone pairs
M3 for H bond from the Ip to the $H(\delta+)$ on the other molecule
Lone pair on hydrogen CE $=0$
OHO CE = 0
If only one molecule of water shown
$C E=0$
(c) Hydrogen bonds/IMF (in water) stronger

OR
IMF/VDW/dipole-dipole forces (in $\mathrm{H}_{2} \mathrm{~S}$) are weaker
OR
H bonding is the strongest IMF
Ignore energy references
Comparison must be stated or implied
(d) Atoms/molecules get larger/more shells/more electrons/more
surface area
Not heavier/greater Mr
therefore increased Van der Waals/IMF forces
Ignore references to dipole-dipole forces
(e) Dative (covalent)/coordinate

If not dative/coordinate $C E=0 / 2$
If covalent or blank read on
(Lone) pair/both electrons/two electrons on $\mathrm{O}\left(\mathrm{H}_{2}\right)$ donated (to H^{+}) OR pair/both electrons come from $\mathrm{O}\left(\mathrm{H}_{2}\right)$

Explanation of a coordinate bond specific to oxygen or water required
Not just $\mathrm{H}+$ attracted to lone pair since that is nearer to a H bond
(f) ionic
if not ionic $C E=0$
oppositely charged ions/+ and - ions or particles
atoms or molecules loses M2 and M3
ions attract strongly OR strong/many (ionic) bonds must be broken
S - loses M2
Reference to IMF loses M2 and M3

M3. (a) $2 s^{2} 2 p^{6}$;
If ignored the $1 s^{2}$ given and written $1 s^{2} 2 s^{2} 2 p^{6}$ mark as correct Allow capitals and subscripts
(b) (i) $\quad \mathrm{Na}^{+}(\mathrm{g}) \rightarrow \mathrm{Na}^{2+}(\mathrm{g})+\mathrm{e}^{(-)}$;

One mark for equation and one mark for state symbols

$$
\begin{aligned}
& \mathrm{Na}^{+}(\mathrm{g})+\mathrm{e}^{(-)} \rightarrow \mathrm{Na}^{2+}(\mathrm{g})+2 \mathrm{e}^{-(-)} ; \\
& \text {M2 dependent on } \mathrm{M} 1 \\
& \text { Allow } \mathrm{Na}(\mathrm{~g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Na}(\mathrm{~g}) \\
& \text { Allow } X^{+}(\mathrm{g}) \rightarrow \mathrm{X}^{2+}(\mathrm{g})+\mathrm{e}=1 \text { mark }
\end{aligned}
$$

(ii) $\quad \mathrm{Na}^{(2+)}$ requires loss of e^{-}from a 2(p) orbital or $2^{\text {nd }}$ energy level or $2^{\text {nd }}$ shell and $\mathrm{Mg}^{\left({ }^{(2)}\right.}$ requires loss of e^{-}from a 3(s) orbital or $3^{\text {rd }}$ energy level or $3^{\text {rd }}$ shell / $\mathrm{Na}^{\left({ }^{(2+)} \text { loses e from a lower (energy) }\right.}$ orbital/ or vice versa;

Not from 3p

Less shielding (in Na);
Or vice versa for Mg
$\mathrm{e}^{(-)}$closer to nucleus/ more attraction (of electron to nucleus) (in Na);
M3 needs to be comparative
(iii) Aluminium /AI;
(c) Decreases;

If not decreases $C E=0$
If blank, mark on

Increasing nuclear charge/ increasing number of protons;

Electrons in same shell or level/ same shielding/ similar shielding;
(d) Answer refers to Na ;

Allow converse answers relating to Mg .
Na fewer protons/smaller nuclear charge/ fewer delocalised electrons;
Allow Mg is $2+$ and Na is + .
If $v d w C E=0$.

Na is a bigger ion/ atom;

Smaller attraction between nucleus and delocalised electrons;
 If mentioned that charge density of Mg^{2+} is greater then allow first 2 marks.
 (ie charge / size / attraction).
 M3 allow weaker metallic bonding.

(e) (Bent) shape showing 2 lone pairs $+2 \mathrm{~N}-\mathrm{H}$ bond pairs;

Atoms must be labelled.
Lone pairs can be with or without lobes.

Bent / v shape/ triangular;
Not tetrahedral.
Allow non-linear.
Bent-linear = contradiction.
(f) Ne has full sub-levels/ can't get any more electrons in the sub-levels/ Ne has full shells;

Not $2 s^{2} 2 p^{6}$ alone.
Not stable electron configuration.

